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An analytical method is developed for analyzing the nonstationary processes 
in a heat exchanger. Computational relationships are obtained and criteria 
are formulated for the thermal optimization of the system parameters. 

Heat exchange structures in the form of axisymmetric ribs fastened to a central cooler 
and submerged in a melting, subliming, or freezing coolant [1-3] are utilized extensively 
in a number of modern branches of engineering, cryogenic, space, radio engineering, etc., 
for the thermostatting of different objects. The problem of optimizing the structural, 
thermal, and mass-scale parameters of such apparatus is made difficult by the lack of ana- 
lytical solutions describing the nonstationary thermal fields and also by the sufficient 
complexity of using a numerical solution [2]. 

The purpose of this paper is to obtain an analytic solution of the problem under con- 
sideration in application to sublimation cold accumulators and melting-solidifying accu- 
mulators [1-3] when a constant power is delivered (removed) to a heat exchange system 
(refrigerator, electrical heater, external influx to optical or other cryogenic units). 

For definiteness we examine the temperature fields of a system of parallel circular 
ribs of radius R 2 and thickness ~ (see Fig. i) fastened to a central cooler of radius R I. 
The space of width 2h (6 << h ~ R 2) between the ribs is filled with a subliming coolant. 
A constant thermal flux Q is delivered to the central cooler. We consider the thermal 
resistance of the cooler to be much less than the thermal resistance of the ribs R r. Con- 
sequently, the heat supply to each rib QRI can be constant in time, and just the problem 

of sublimation in the gap between adjacent ribs (see Fig. i) can be considered independent- 
ly. Then the temperature field of the disc T and the width of the gas gap H(R, t) along 
it are described in a cylindrical coordinate system (z is along the disc axis, and R along 
the slot radius) in conformity with the approaches used in [i, 2] by the following system of 
equations 

aT _ ~  I a (R aT ) 2 
at a• -5-# - - E  q (R, 0; ( i )  

T(R, 0) ~ T o ;  ( 2 )  

T(R, t) To OH 
q~(R, t)= ~,e --~t ' H ( R ,  t) = Por, s (R,  t); ( 3 )  

aT QR,.  (4) 

OT 
qR(R2, t ) = - - L ~ - ~ ( R z ,  t) ~ O. (5) 

Following [1, 2],  the fo l lowing assumptions are made for  w r i t i ng  ( I ) - ( 5 ) .  The heat 
conduction 1 M and the specific heat c M of the plate are constant while the temperature 

field is homogeneous along the plate thickness 6 (6 << R2 - R I) and depends only on the 
coordinate R and the time t. The heat flux qz(R, t) from the plate surface is expanded 
completely on surface sublimation of the coolant (with density P0 and specific heat of 
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Fig. i. Configurations of the main 
element of a sublimation cold accu- 
mulator structure with axisymmetric 
ribs: i) rib; 2) coolant; 3) heat 
pipeline, phase transition front is 
displaced; a) in the radial direction 
for Rr ~ i; and b) perpendicularly 

to the plane~ of the plate for Rr >> i. 

sublimation r s) and is determined by the effective heat conduction of the gas gap X e. 
The rib temperature is constant at the initial instant and equals the temperature T o of 
the subliming body. We shall also neglect heat exchange with the central cooler in con- 
formity with the numerical data [2] and the duration of the sublimation process around it. 

Moreover, taking into account the slow change in the aggregate state of the medium, 
the process of a change in the gas gap profile and the plate temperature will be assumed 
quasistationary. There results from a further solution of the problem that within the 
framework of the assumptions made, the nature of the process mentioned depends in prin- 
ciple on the value of the criterion 

R 2 Rr  = (~6h l [~e  ( ~ - -  R~) In (RJR~)]) ~/2, ( 6 )  

which physically governs the relationship between the thermal resistances of the gas gap 
between the plates Rg and the plate itself Rp in the radial direction 

Rg= h/[2~%e (R~ -- R~)]; (6a) 

Rp= ln(R2/R~)/(2~5%~). ( 6 b )  

A gas gap is formed rapidly in the domain Rr ~ i above the whole plate surface and 
then it starts to grow with time at a constant velocity (see Fig. ib). The other limit 
case is observed in the domain Rr < i when a sublimation front advancing along the rib 

radius (see Fig. la) is formed from the side of the central cooler. Such an extraordinary 
pattern will be observed physically when the thermal resistance of the gas gap between the 
ribs is much less than the thermal resistance of the rib itself, i.e., when quite thin ribs 
are arranged close to each other on the cooler. It is interesting to note that realization 
of the "mean-distributed" or "local" phase transition regimes under consideration is inde- 
pendent of the intensity of the heat supply and development of the sublimation process after 
formation of a quasistationary front in both the one and the other case. The pattern de~ 
scribed should evidently be observed qualitatively even in heat exchange apparatus of other 
symmetry, for instance, between global surfaces or in a rectangular rib system. 

Let us turn to the solution of the "local" sublimation problem governed by values of 
the parameter Rr < i. In this case the working substance sublimation process ceases in 

the domain R ~ R1(h) (see Fig. la) where the thickness of the gas gap at the rib reaches 
the value h, and if heating of the coolant gas phase is neglected, it is necessary to re- 
quire 

q~ ( R, t)ln~n,ct> = O. 

An adiabatic approach can be applied to describe the regime when the sublimation front 
has already been formed and its subsequent displacement is determined mainly by heat flux 
from the rib surface by examining the interval between t and t + T, where t is of one or- 
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der and �9 is small compared with the characteristic times of phase transition front 
motion, i.e., x ~ R1(t)(dRl(t)/dt) -I 

Let us seek the approximate solution T(R, R1(t), x) of the heat conduction equation 
(i) in the ring Rl(t) ~ R ~ Ri(t) by limiting ourselves in the time �9 to the first term 

in the expansion of the flux qz(t + ~) in a series in the small parameter T/Rl(t)(dRl(t)/ 

dt), i.e., by considering that qz is independent of 

We then have from (3) 

q, (R, RI (t), ~) ,~ q, (R, Rz (t)). (7) 

and 

H (R, R~ (t), T) ~ Ho (R, R~ (t)) + ~q, (R, R~ (0)/(9o%) (8) 

T(R, R1 (t), T) ~_ T O + 

i (9) 
-~- -~e qz (R, R1 (t)) [Ho (R, R1 (t)) -~ Tqz (R, R1 (t))/(9ors)]. 

S u b s t i t u t i n g  (9) i n to  (1) and n e g l e c t i n g  components c o n t a i n i n g  the  smal l  q u a n t i t y  
d R l ( t ) d t ,  we o b t a i n  a system of  equa t ions  f o r  t he  f u n c t i o n s  qz(R) and H0(R) t h a t  must be 
so lved  f o r  " a d i a b a t i c "  boundary c o n d i t i o n s  

aT e=~o(t) = 0, H0 (R, R1 (t))[R=R,U) = 0, H0 (R, Rz(t))lR=~,(t~ =/z, (z0) 
O R  . 

supplemented by c o n t i n u i t y  c o n d i t i o n s  fo r  the  t e m p e r a t u r e  T(R, R l ( t ) ,  ~) and the  h e a t  
flux -XM(aT/SR)(R, RI(L), T) in the circle R = Rl(t). 

The heat expenditure in sublimation is zero in the domain R I _< R <_ Ri(t) and the solu- 
tion of (I) is sought for qz = 0 in the form 

0T T(R, Rl(t), , ) =  T(R, R~(t), 0 ) + - - ~ ( R ,  Ra(t), 0)~, (11) 

that satisfies the boundary condition (4). 

As a result of integrating the heat conduction Eq. (i) we arrive, firstly, at the 
deduction that the heat flux from the rib is distributed uniformly in the domain Rl(t) = 
R = Ri(t) with intensity C0(Rl(t)), i.e., 

q=(R, R~(t))~--Co(R~ (t)). (12) 

Secondly ,  we f i n d  the  dependence of  t he  magni tude of  t he  gas gap H0(R, R l ( t ) )  on t he  
r a d i u s  R 

where 

! ARC(t)( R2 Ho(R, R~(t)) = 4 R~(t) 1 - -  In , ( 1 3 )  

A =  1 c~PM Co(R~(O)+-~--Ze (14) 
%~ P0rs 

and the outer coordinate of the front Ri(t) is determined by the inner R1(t) and the heat 
flux intensity C0(R1(t)) according to the equation 

R~ (t) _ 2 In R, (t) 1 ~ 4h 
R~(t) R~(t) ARC(t)" ( iS) 

In the domain R. 1 = R = Ri(t) the temperature distribution corresponding to the condi- 
tions listed above has the form 

h C~(Rl(t)) R1 
T(R, Rl(t), , ) = T  o + - ~ e  Co(R~(t))+T ~ePor~ k~ X 
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x 
�9 2~e,p0rs Co(R~(t)). lnR~(t ) 4~Xe pots (RZ--R~(t))" (16) 

C o n t i n u i t y  o f  t h e  r a d i a l  h e a t  f l u x  f o r  R = R z ( t )  i s  a s s u r e d  by s a t i s f y i n g  t h e  c o n d i -  
t ion 

c"P"6C~ (R~(t)--R~) qoR~6 = R~(t)--R~(t), (17) 
2,~ )~e C0 (R1 (t)) 

which, together with (15), yields the dependence of the heat flux density C0(Rl(t)) in 
the ring R1(t) <- R <_ R2(t) on the coordinate Rl(t) of the front "tail". 

There now remains for us to find an explicit dependence of R1(t) on the time t, and 
the problem of seeking the temperature distribution in a plate ((9), (12), (13), (16)) 
will be solved. To do this we turn to (8) and rewrite it in the form 

"~Co (R, (t))l(pors) :-= Ho (R, R~ (0 + ~XRI (t)) - -  Ho (R, R~ (t)), 

AR: (t) = R~ (t + ~) - -  R~ (t). 

No t ing  t h a t  t h e  t o t a l  q u a n t i t y  o f  h e a t  h a v i n g  d e p a r t e d  to  s u b l i m a t i o n  in  t h e  sma l l  
t i m e  T e q u a l s  

~"") aHo (R, RI (t)) Co (R~ (t)) ~ (R~ (t) - -  R~ (t)) = 2apor s,AR~ (t) I' dRR 
R,'(~ art (t) 

and l e t t i n g  �9 t e n d  to  z e r o ,  we o b t a i n  a d i f f e r e n t i a l  e q u a t i o n  f o r  R x ( t )  

i ~.u) OHo(R, Rl(t)) ] - I  

- ~( OR~ (t) ] dt 2pots ~n tj 
(18)  

The solution obtained is simplified substantially if it is taken into account that 
specific heat c M of the plate is so small 

4~rs  (~e h) I/2 

9~qoR~63/2 

Then (15), (17), and (18) are rewritten in the t h a t  i t  can be neg lec ted  i n  ( 1 5 ) - ( 1 7 ) .  
form 

R~ (t) - -  R~ (t) - -  2R~ (0 In R~(t) = 2 h 6  ~ 
�9 - , (19)  Rz(t) Xe 

qoR16 
C O (R 1 (t)) = Rg (t) - -  R~ (t) ' ( 2 0 )  

dt 

For values of Rr 
limation domain 

dR, (t.........~) _ qoRa82~,~ 1 ( R~ ( t ) -  R~ (t) + 2Rl 2 (t)In R, ( t ) ) - '  
Oors xe R~ (t----T- ~ (t-----7 " (21 ) 

<< i the solution of (19) yields the magnitude of the "local" sub- 

R2 (t) - -  R1 (t) ,-~ -V?- ,  ? = - -  h6 .  ( 2 2 )  
;ke 

The relationship (22) is satisfied at almost all times of thermoaccumulator operation 

if ~ << R 2 - R I. The dynamics of the inner and outer boundaries of the phase transition 
domain is here described by equations of one kind 

R,(t) dR,( t )  = VoR1 ' i = 1, 2, (23)  
dt 

where V o = qo6/(2porsh). 
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Fig. 2. Temperature distribution over 
the rib of an argon accumulator with 
"local" sublimation section v~y ~ 0.048 
m (Rr 2 = 0.24; QRI I = 0.05 W) at dif- 

ferent times t: I) at the time of 
front formation, t o = 6.5 days; 2) 
t = 43 days; 3) t = 132 days. T - T o , 
K; R, m. 

Integrating (23) for i = 1 we obtain an explicit dependence of Rz(t) on the time t 

2R1V~ (t II12 
R, (t) ~ R~ (to) 1+ R~(to----~ --t~ , I / y ~  R2--Rz. (24) 

The radial temperature distribution in the plate is represented in Fig. 2 for dif- 
ferent times t with (24) taken into account. 

The most important characteristic of a sublimation accumulator is the temperature 
stability of the object being cooled during exploitation. In the case Rr << 1 the tempera- 
ture of the object (heat line) is determined by the sum of the temperature drops over the 
rib AT r (in the domain R 1 ~ R ~ Rz(t)) and in the "local" sublimation section of the front 

ATf (in the domain Rz(t) ~ R ~ R2(t)). 

The temperature drop over the rib grows logarithmically with time as a function of 
Rz(t) 

A7~ (0 - qoR, in R, it) 
x>, R ~  ' (25) 

while the temperature drop over the length of the sublimation front diminishes with time 
in inverse proportion to the radius of the domain in which the sublimation of the working 
substance ceased 

Rlq0 I/~ 
ATf (t) ~ ~ (R1 (l) -~ R~ (t)) (26)  

I t  i s  e a s y  t o  s e e  t h a t  ATf ~ AT r f o r  a l m o s t  a l l  v a l u e s  o f  t h e  t i m e  t ( s e e  F i g .  3 ) .  

For  t h e  p a r t i c u l a r  c a s e  r ~ R 2 - R 1 c o n s i d e r e d  h e r e ,  i t  i s  p o s s i b l e  t o  e s t i m a t e  t h e  
c o n t r i b u t i o n  t o  t h e  m a g n i t u d e s  b e i n g  d e t e r m i n e d  f o r  t h e  h i g h e r  o r d e r  c o m p o n e n t s  f rom t h e  
e x p a n s i o n  o f  q z ( t  + ~) in  power s  o f  T , [ see  ( 7 ) ] .  Thus ,  f o r  i n s t a n c e ,  t a k i n g  a c c o u n t  o f  
t h e  q u a n t i t y  ( d q z / d T ) t = 0 ~  i n  (7 )  r e s u l t s  i n  c o r r e c t i o n s  on t h e  o r d e r  o f  8 R z / R 1 2 ( t )  i n  t h e  

e x p r e s s i o n s  ( 2 4 ) - ( 2 6 )  t h a t  g u a r a n t e e  t h e  v a l i d i t y  o f  t h e s e  e x p r e s s i o n s  f o r  6R 1 << R 1 2 ( t ) .  

In the opposite limit case R r >> i, as has already been noted, rapid formation of 
a gas gap whose thickness varies along the radius R according to the law 

Hav(R) = - ~ , T  2 2m-~--2) (27) 

occurs over the whole plate surface. 

Starting with the time ~ = 0 of the appearance of a slot between the solid phase and 
the outer endface of the plate, the gas gap increases with an identical velocity Cav = 

q06R1/(p0rs(R~ - R2 z)) for all values of the radius R. A constant and uniformly dis- 

tributed flux qz = q06Rz/(R22 - RI 2) over the plate area for which the plate temperature 

field is described by the simple formula 
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F i g .  3.  Dependence  o f  t h e  t e m p e r a t u r e  d rop  ( b e t w e e n  t h e  s o l i d  a rg o n  
and t h e  h e a t  l i n e )  and i t s  componen ts  on t h e  t i m e :  1) i n  t h e  c a s e  
o f  " m e a n - d i s t r i b u t e d "  s u b l i m a t i o n  ( ~ r  1 = 7 . 1 1 ;  QRz 1 = 0 .37  W); 
2) AT E = ATf + AT r in  t h e  c a s e  o f  " l o c a l "  s u b l i m a t i o n  (Rr 2 = 0 . 2 4 ;  

QR12 = 0.05 W); 3) ATf on the "local" sublimation section; 4) AT r, 

AT, K; t, days. 

qo6Rl~ l q06R1 Hay(R) -F (28)  
T(R, ~ )=  To+ (R~--R~)2, e por s(R~-R~) 

corresponds to such motion. 

Therefore, by variating the ribbing parameters 6, h, and X M any of the regimes con- 
sidered Rr m 1 or Rr ~ I can be assured. By using the known relationship 

QH = AT~R, (29)  

the thermal resistance of the gas gap between the ribs Rg and of the very rib in the radial 
direction that are described by the relationships (6a) and (6b) can be determined for these 
regimes from (25) and (28). Just one of the resistances RB or Rp is evidently conserved 
in these regimes precisely because of their noncommensurability determined by the conditions 
R- r m i or Rr ~ i. Both these resistances must be taken into account in the intermediate 
domain Rr ~ i encountered most often in practice, and it can be assumed approximately that 

the total resistance R E equals 

Rx = Rg+Rp, (30) 

while the total temperature drop between the coolant and the heat line can be determined 
in the domain i0 > Rp > 0.i in the form 

AT~ = Q~R=. (31) 

It hence follows that the minimal temperature drops in a heat exchanger can be achieved 
only under conditions of a limit diminution of the total thermal resistance R E and also of 
both components Rg and Rp, respectively. This means that a heat exchanger with Rp ~ Rg 
must be constructed to obtain the minimal drop AT. 

The above elucidation permits proposing the following algorithm for selection of the 
optimal construction parameters. We select the width of the gap between the plates equal 
to 

h ~  ~%e (R~- -  R~) AT= 
Q,~ (32) 

from relationships (6a), (30), and (31). 

Furthermore, we select the rib thickness 
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from the relationship (6b). 

Therefore, the condition 

In(Re/R0 @i 
~L:~ AT~ (33) 

h6 = ~e R~ ~---~(~--R~)ln(R2/R~) (34) 

is satisfied for a heat exchanger that is optimal in the temperature drop, which is equiv- 
lent to Rp = i. At the same time, the ratio h/6 is not kept constant but is a quadratic 
function of the ratio ATS/Qri: 

a ~ In(R2/R~) \ @~ / . (35) 

The s e c o n d  i m p o r t a n t  c h a r a c t e r i s t i c  o f  t h e  s y s t e m  i s  t h e  r e s i d u a l  mass  &m ( p e r  u n i t  
l e n g t h  o f  t h e  c o o l e r )  a t  t h e  t i m e  when (9 )  and (28)  c e a s e  t o  d e s c r i b e  t h e  t e m p e r a t u r e  f i e l d s  
( s e e  F i g .  3 ) .  We a p p r o x i m a t e l y  o b t a i n  t h a t  f o r  t h e  two s y s t e m s  l y i n g  in  t h e  r a n g e  g r  z >> 1 
and Rr  = << 1, t h e  mass  r e l a t i o n s h i p  e q u a l s  

km~/kmZ~B/[R$(R~)2l, B ~ I .  (36)  

As an illustration, we take a system of copper ribs with Rr z = 7.11 (IM I = 5"102 W/ 

(m'K), R= = 0.3 m, R l = 0.i m, ~l = 8"10-4 m, h I = 2.7"10 -2 m) placed in subliming argon. 

Replacing the rib material by the stainless steel 12KhI8N9T [IM 2 = 8.2 Wt/(m'K)] and alter- 

ing the parameters 8 and h somewhat (~= = 3.10 -4 m, h= = 5-10 -~ m), we obtain Rr = = 0.24. 

In sum we have the relationship AT l = 1.13 AT=, while Am I = 0.05 Am =. Therefore, in the 

case of nonrigid requirements on the temperature stability, it is possible to go over to 
the range R r m 1 to reduce the residual masses. 

In conclusion, the following fundamental results can be noted. Analytic relations 
are obtained in a quasistationary approximation to describe changes in the temperature 
field and the thermal resistances of a system of circular ribs submerged in a medium under- 
going a phase transition. An algorithm is proposed for the selection of the structural 
parameters of the system. It is shown that the condition for thermal optimization of the 
system is selection of the rib and gas gap thicknesses that will permit commensurability 
of the rib and gas gap thermal resistances for a given temperature drop and thermal load. 

NOTATION 

T(R, t) is the rib (fin) temperature field; H(R, t) is the running value of the height 
of the gas gap between the rib and the interfacial surface of different coolant phases; 
T o is the phase transition temperature; q0 is the heat flux density at the rib base; r s is 
the specific heat of sublimation (melting) of the working substance; AM is rib heat conduc- 
tion; c M is the rib specific heat; PM is the density of the rib material; 00 is the coolant 
density; 6 is the rib thickness; h is half the spacing between ribs; R l and R 2 are the 
rib inner and outer radii; R1(t) and R2(t) are coordinates of the inner and outer boundaries 
of the "local" sublimation zone, and I e is the effective heat conduction of the coolant 
gas phase. 
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